

Amrit is an IoT-based system for real-time monitoring of quality and quantity for potable water. The system has an interactive dashboard for data visualization with node's hierarchy. A user can manage the faults in water distribution network, demands, bills and supply schedules.

Challenges & Requirements

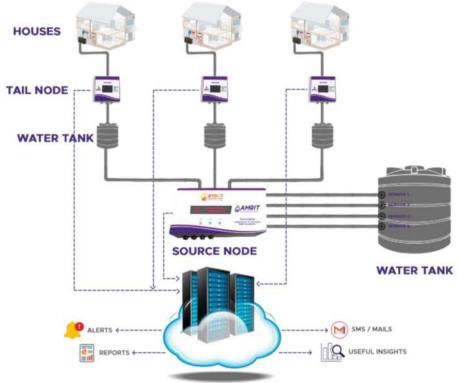
	w.				Solal Solutions P
	Raw water intake well	Water treatment plant	ELSR/GLSR	DMA	House hold
			E		
CHALLENGES	Sessional variation of water quantity & quality needs different filtration needs	Varying raw water quality needs diffe rent filtration/chemical mixing needs	 Timely filling & distribution Ensure water quality before distribution 	Timely distributionLeakages/TheftWater pollution	 Timely distribution Leakages Water pollution End mile availability
PARAMETER S TO MONITOR	 Turbidity pH Water Level at source Out flow Pressure Pump Efficiency 	 Turbidity pH Chlorine Level at filter beds Out flow Pressure Pump Efficiency 	 Water Level Inflow/Out Flow Chlorine 	(at strategic points)1. Flow2. Pressure3. Chlorine	(at strategic points)1. Flow2. Pressure3. Chlorine
CONTRO LS REQUIRE D	 Pump ON/OFF Valves automatic Open/Close 	 Filter bed Valve open/close Backwash Pump ON/OFF Chlorine Dozing 	Valves automatic Open/Close	Valves automatic Open/Close	Valves automatic Open/Close

Smart Water Management

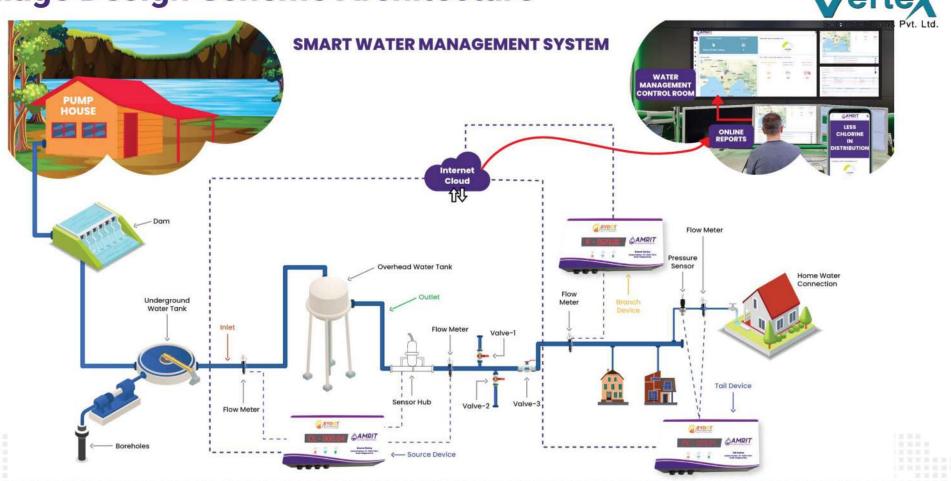
- Aims to provide Quality and Quantity by effective management of water distribution network.
- System monitors & controls water distribution network from central place using IoT based Sensors, (i.e flow, level, water quality, valve actuators..etc) deployed along distribution and household connections.

Objectives:

- Right quantity at Right time of water distribution
- Right quality of water
- Reduce Wastage of Water


Water Measurement and Quality Monitoring System Vertex

- Collecting real-time water quality and quantity parameters using IoT and harnessing data for generating valuable insights.
- The insights will be used to ensure "Har Ghar Jal" mission and will help taking decisions regarding predictive, maintenance and schedule optimization.
- The system will help monitoring real-time water consumption and quality.
- Insights can be visualize in an easy to understand way using interactive dashboard.
- The system is based on cutting edge technology's like IoT, AI and Bigdata analytics and will improve water distribution.


Commercial House/ Design Scheme Architecture

SERVER CLOUD

Village Design Scheme Architecture

AMRIT IoT Device

Device Features

Multiple Connectivity Options

Remote Data Access

Standalone Sensors

Monitor Multiple Equipment's

Customizable

Battery Backup

GSM / LoRa Technology

Water Flow Sensor

Local Live Monitoring Solution

Flow Totalizer Display

Local Software Access

Water Control/Pump Control

E-mails, SMS, Report

Global Live Monitoring Solution

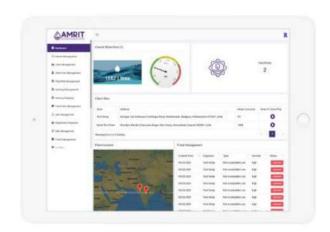
Key Features

- VerteX
- Users can download all kinds of analytical graphs anytime, anywhere with just a single click.
- Receive SMS and email notifications
- Real time pH, TDS, Nitrate, Residual Chlorine, Fluoride monitoring system
- Full visibility of your system's technical and financial performance, including interactive charts and site layout
- Visualization of Sensor Data, Future Predictions, Leakage detection, Water flow etc.
- · Data presentation at the module-level, string-level and system level
- Comparative analysis diagnostics
- Mobile and web-based monitoring
- Ease of use and control from anywhere in the world
- Easy control over complex systems like pump control, water level control
- Remote Connectivity
- Water level indicator system

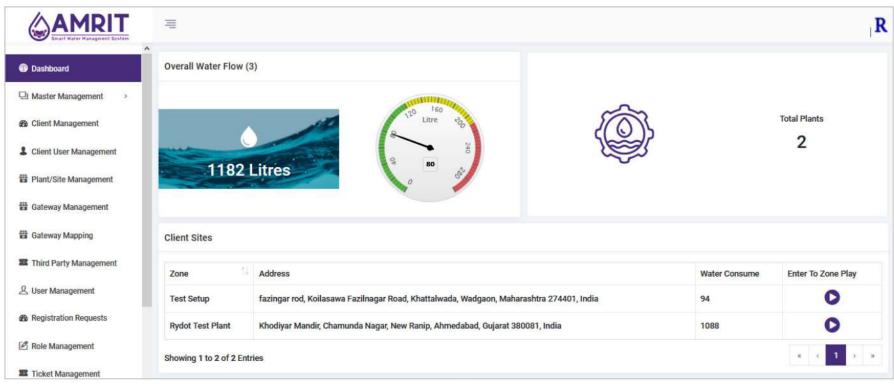
USP

- Low cost
- Quick installation
- Tampered detection
- Low power (15-20 ma idle consumption)
- Plug & play sensor connectivity
- 2g/4g / lora / wi-fi connectivity ip65 standard
- 48 hrs to 180 days power backup
- Microcontroller
- Portable
- Remote calibration and device management
- Compact size
- Data communication as per user define
- Live display of data on led screen
- Power on solar
- Data storage till 1 year on device

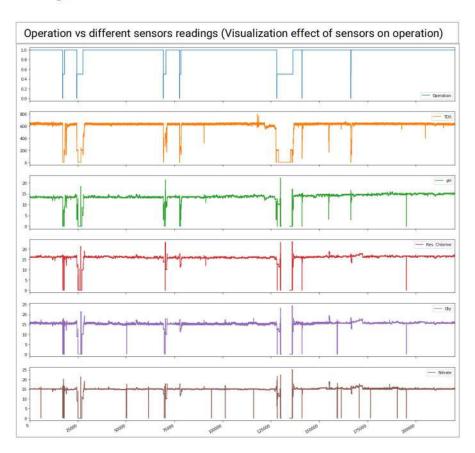
Specifications


Flow Meter Pressure Sensor					IP68 housing		
Quality Sensors				 Linux OS Enabled 			
					 Cortex A-5 ARM processor 		
ridoride	o zo.o mg/mrc	0.1	(1-)0.3		• 3.5 inch LCD Display		
Fluoride	0-5000 mg/litre 0-5 mg/litre 0-500 mg/litre 0-20.0 mg/litre	0.01 1 0.01 0.1 0.1	(+-)2 (+-)0.05 (+-)5 (+-)0.5		 Upto 5 solenoid Valve control 		
TDS Chlorine Nitrate					 Up to 8 sensors can be attached 		
				Features	LAN Enabled		
pH	0-14	0.01	(+-)1		LORA Enabled		
Quality Sensors	Range	Resolution	Accuracy		Wi-Fi Enabled		
Battery capacity	city 12V 3500mAh				 4G Volte Enabled 		
Current	2A				GPRS Enabled		
Voltage	12-24V DC			GSM Enabled			
Category			Connectivity Options				

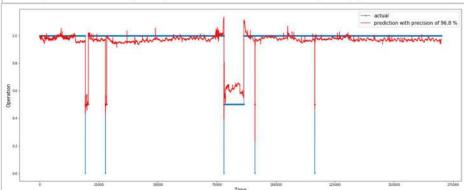
Platform Independent System

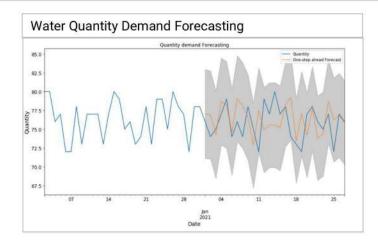

USP

- Analytics & insights of raw data
- Real-time device and data monitoring
- Remote calibration and device management
- IoT configuration
- Alert ticket management about quality control and flow control
- · Email, SMS alert
- Reports
- Compare plant performance
- Security user wise and role wise.
- Device health (Battery, Power) monitoring
- Remote device configuration and control.
- Dashboard with various KPI.
- Deploy on any cloud or on premises data center.
- Container base.
- Onboarding user or device using RPA in auto mode.
- Al chatbot support for ticket, information etc.
- Geo tagging of device display

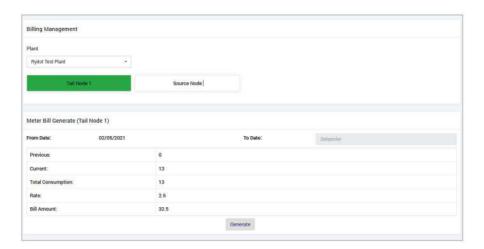

Monitoring Dashboard



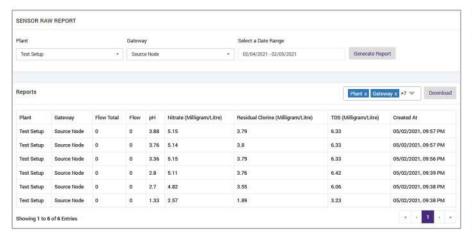

Analytics Dashboard

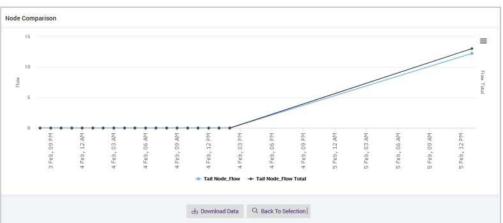


Note: These plots are generated with synthetic data for displaying the fault detection using real time and historical data.



Billing, SMS, Email & Real Time Ticket Generation For Error Detection





Analysis Reports

Configuration

ow 100 ventries						+ γ
ateway Name	Assign Plant	Serial Number	Created At	On Boarding	Status	Actions
Tail Node	Test Setup	b8:27:eb:6b:be:7c	05/02/2021	On Boarded		
End Tail Node	Test Setup	b8:27:eb:b6:77:bb	05/02/2021	On Boarded		
Source Node	Test Setup	b8:27:eb:aa:47:b1	01/02/2021	On Boarded		
Source Node	Test Plant	b8:27:eb:aa:47:b2	09/01/2021	On Boarded		
Tail Node	Test Plant	b8:27:eb:6b:be:7d	09/01/2021	On Boarded		
Source Node	Test Plant	dc:a6:32:25:12:ad	01/01/2021	On Boarding		
Source Node	Test Plant	asd087a0s8f0a9s8f	01/01/2021	On Boarding		

Key Benefits and Social Impact

- The system provides real time monitoring which is far better than offline quality check in laboratories.
- Water contamination cause serious conditions such as cholera, diarrhea, typhoid, amebiasis, hepatitis, gastroenteritis, giardiasis, campylobacteriosis, scabies, and worm infections.
- Water contamination can be monitored in real time and authorities can take necessary action.
- Better policies and planning can be done by using the insights from data captured through the system.
- Good quality of drinking water available to citizens.
- No disturbance to present inventory.
- No distribution or manpower charges

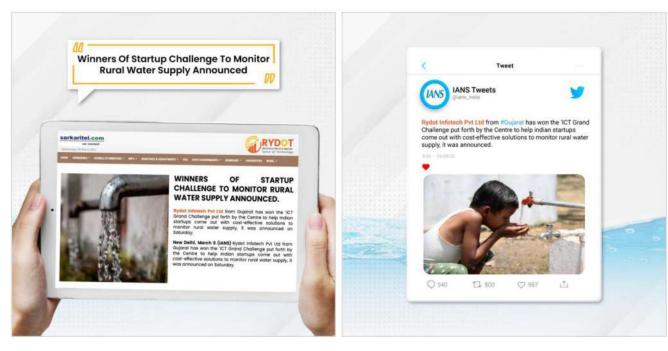
Key Benefits and Social Impact

- Improved success rate of water supply schemes due to end-to-end visibility of water supply to village, district, state, and national level at near real-time (for quick response corrective actions)
- Equitable access to all sections of the society by monitoring water delivery across habitations
- Alleviation of issues (social, economic and health) in village resulting from in-accessibility to potable water in adequate quantity; improved transparency and accountability
- Reduced cost of operations and improved life of water supply schemes (e.g., leak detection, preventive maintenance, optimising resource requirements)
- Better customer satisfaction with improved service levels through faster response time and lesser number outages (e.g., remote dashboards across levels and preventive maintenance)
- Data-driven and evidence-based planning for new schemes/ modifications through advanced analytics (e.g., demand patterns, electricity reliability, source reliability, temporal water quality variation etc.
- Long term sustainability of water sources through improved source monitoring
- Efficient and responsible use of water by end customers by measuring quantity consumed

Recognition

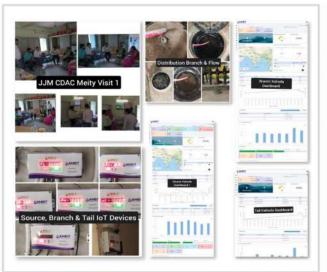
Recognition

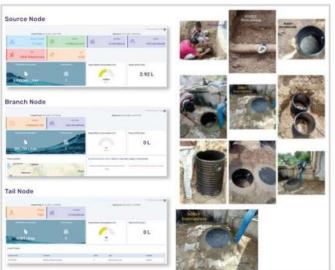
We are heartily thankful to Mr. Mahendra Mahour
Rural Infrastructure Consultant, National Jal Jeevan Mission and
Team (NJJM) for providing us valuable guidance during
the challenge journey.

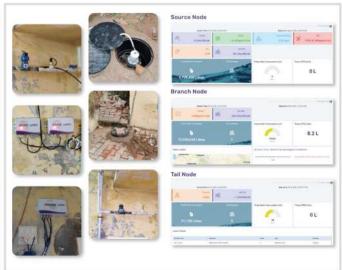

We are heartily thankful to Mr. Sanjeev & Mr. Abhishek (MeitY) and Team for providing us valuable guidance during the challenge journey.

We are heartily thankful to Ms Annie Joyce, Mr. Haribabu, Mr. S D Sudarsan and Team for providing us valuable guidance during the challenge journey.

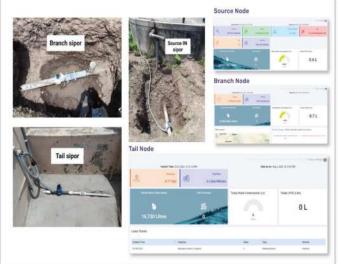
Recognition



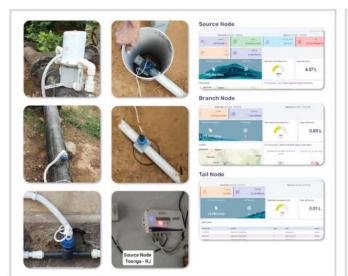


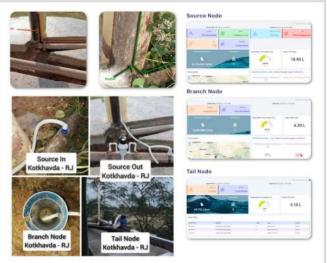


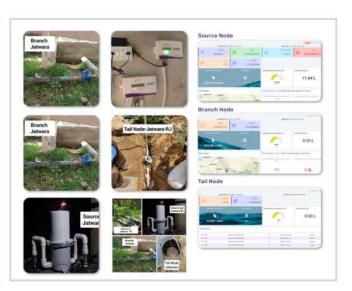
Gujarat - Mahesana 10 Village's



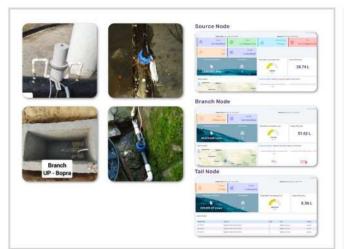
Gujarat - Mahesana 10 Village's

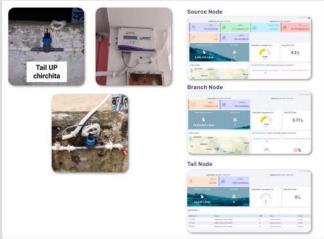


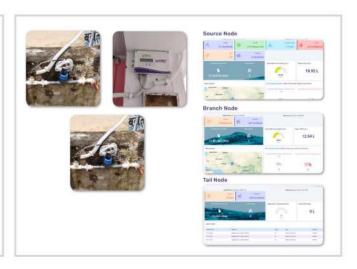




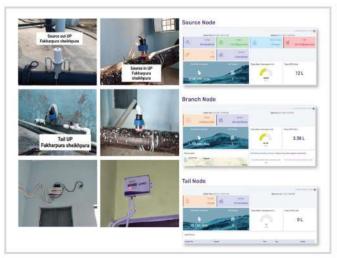
Rajasthan – Jaipur 4 Village's

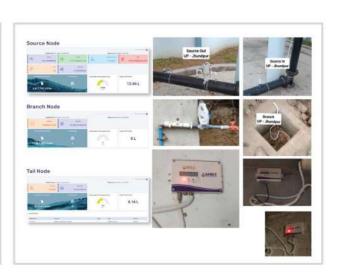




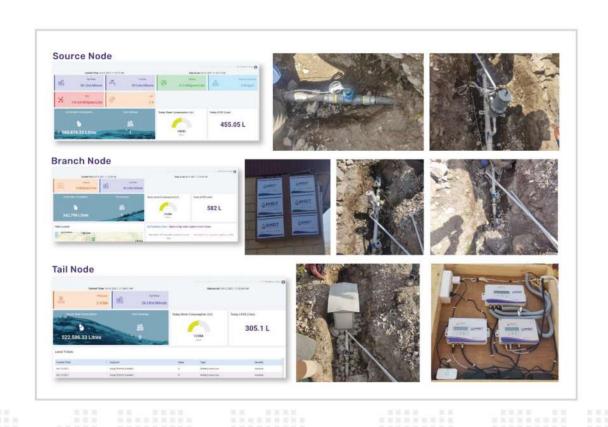


Uttar Pradesh 10 Village's



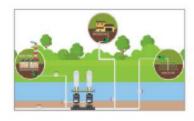


Uttar Pradesh 10 Village's



Ladakh 1 Village

Benefits


Smart Water Billing Systems

Smart Water Leakage And Flow Schedule Prediction

Sewage Treatment Plant Automation

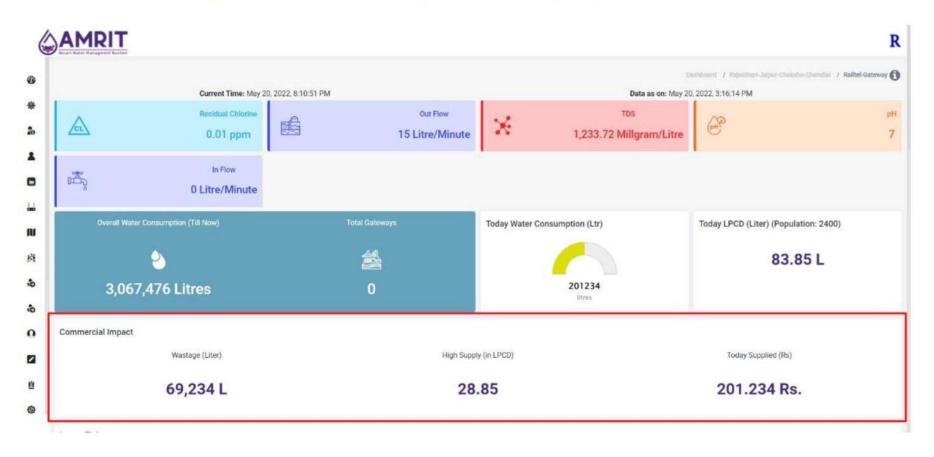
Smart Water Distribution

Smart Water Level Controller

Water Level Indicator

Cost Benefit Analysis (Based on survey conducted in pilot villages)

 System is cost effective and it cost less than 0.2 rupee (20 paise) per capita per day for real time drinking water quality and quantity monitoring.


Cost per capita per day = (Installation cost + Maintenance cost + Computation cost)/ 3* Population Coverage

- We have analyzed the cost per capita based on observations from 25 villages.
- · Water wastage can be monitored and corrective actions can be taken by concerned authorities.
- The average saving on medicines will be more than the cost of system installation (Based on the survey from 25 villages where we installed the system, regarding drinking water and expenses on health). We have used the statistical techniques for hypothesis testing on survey data.
- System has 100% ROI within one year.

ROI = Water saved + Saving on medicines and health care + Saving electricity bill (Auto cutoff)

Cost Benefit Analysis (Based on survey conducted in pilot villages)

Features

 Centralized monitoring & controls powered by advanced data analytics for effective water management.

Continuous monitoring

High accuracy measurements

High Sampling rate

1 million events storage

Advanced Analytics

Interactive Dashboards

3G/4G/LTE, Wi-Fi

Real time alerts

GIS representation

Automatic Valve Control

Automatic Pump Control

Project Outcomes

ROI

- Over Flow cost of 1 Reservoir / Year
 = Rs 3.38 lakhs (~5K USD)
- Line Leakage cost of 1 Reservoir / Year = Rs 9.45 lakhs (~14K USD)
- Total Revenue loss due to leakage
 = Rs 12.83 lakhs (~19K USD)

Note: Production cost per Kilo liter is considered as Rs 6/-

Estimated revenue loss for total 59 reservoirs = 59 x 12.83 Lakhs = Rs. 757 lakhs

Total Solution Cost is 25 % less than revenue loss of one year

Objectives Achieved

- Schedule and duration adherence is improved > 90%
- 150 LPCD supplied as per standards
- Actual water supply which was 24 MGD before installation improved to 33 MGD within couple of months with net 9
 MGD increase

Smart Water Case Study

Results

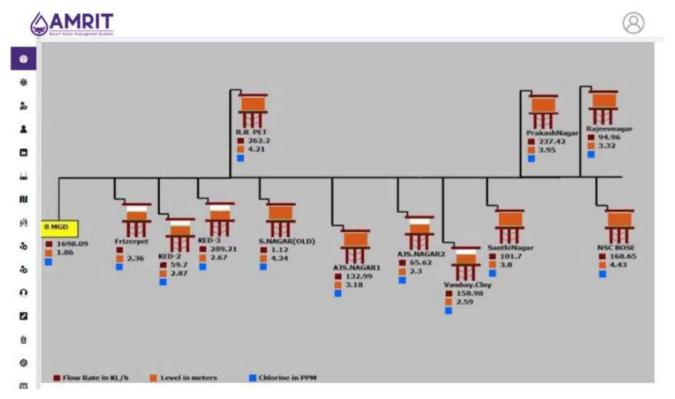
- Over Flow cost of 1 Reservoir / Year
 = Rs 3.38 lakhs (~5K USD)
- Line Leakage cost of 1 Reservoir / Year
 = Rs 9.45 lakhs (~14K USD)
- Total Revenue loss due to leakage
 = Rs 12.83 lakhs (~19K USD)

Note: Production cost per Kilo liter is considered as Rs 6/-

Estimated revenue loss for total 59 reservoirs = 59 x 12.83 Lakhs = Rs. 757 lakhs (~1.12 million USD)

Total Solution Cost is 25 % less than the revenue loss for one year

Case Study

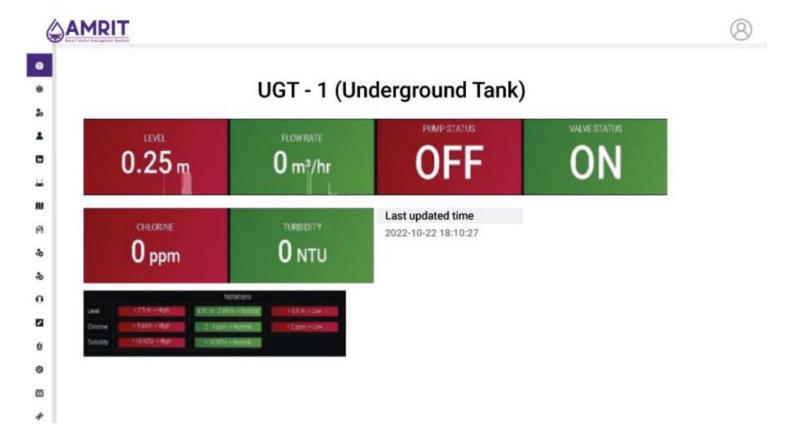

- Schedule and duration adherence is improved > 90%
- 150 LPCD supplied as per standards
- Actual water supply which was 24 MGD before installation improved to 33 MGD within couple of months with net 9

MGD increase

Live Simulation at WTP

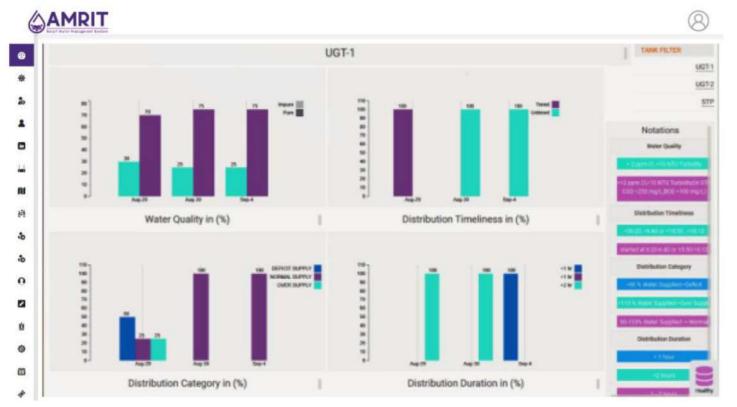
 Operations engineering team can view and live status during filling and distribution and real time alerts trigger immediate actions.

Pump Efficiency

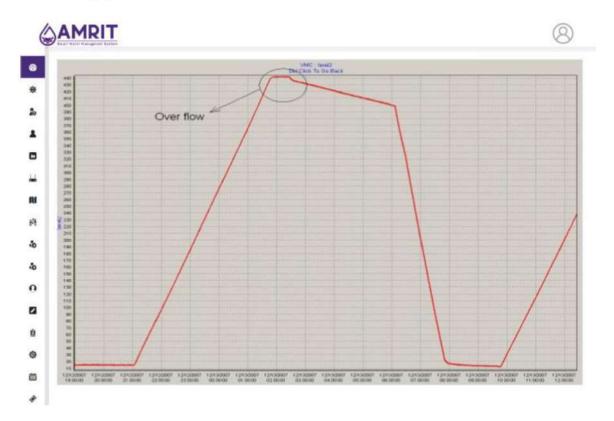

 O&M engineering can continuously monitor, energy efficiency of motors along with power factor, active, reactive power. Accordingly, decisions of maintenance can be taken.

Live Dashboard

VerteX
Solar Solutions Pvt. Ltd.

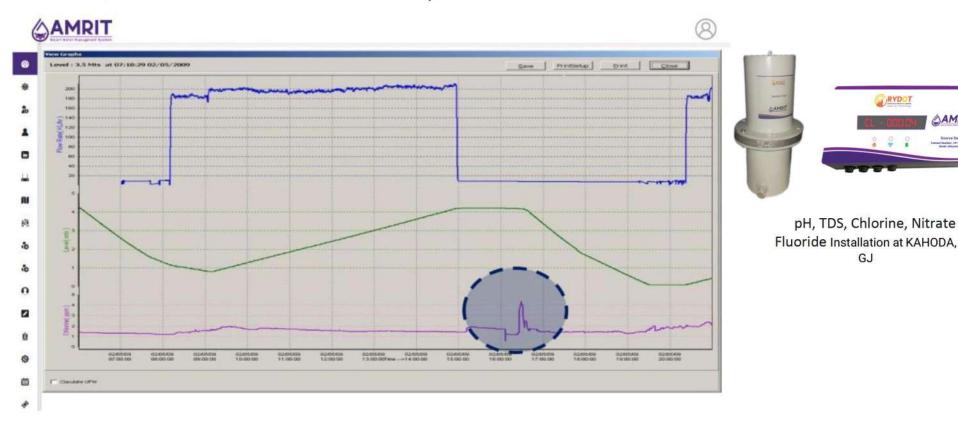

Administration can view status from remote location via PC/Tab/Mobile

Daily/Weekly/Monthly Reports


 Administration can view reports on Water Quality, Timeliness, Duration from remote location via PC/Tab/Mobile

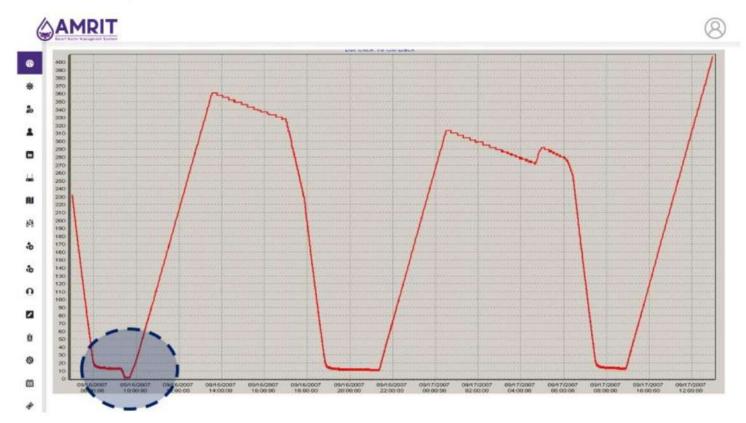
Arresting Overflows

 Real time monitoring of reservoir overflow actuate the alarm such that timely action is being taken by personnel or automatic controls



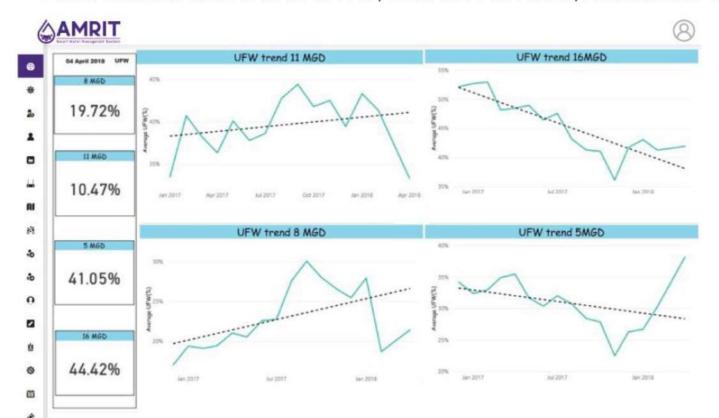
Ultrasonic Level Meter Installation at NTPC, at KAHODA, GJ

Live Chlorination Status


 With distance, condition of pipes chlorine gets decayed. Hence O&M team need to mix chlorine at ELSR/GLSR before water is distributed to public

Cleaning of Reservoirs

 Periodically, O&M team need to clean reservoirs(ELSR/GLSR) by opening drain valve. Using level sensor data, this can be monitored



Installation at KAHODA, GJ

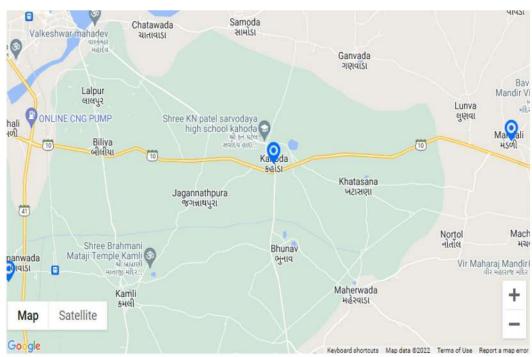
NRW-Estimation

Based on inflow and out flows at WTP, ELSR and DMA areas, Non-Revenue Water is estimated solutions Pvt. Ltd.

Paddle Wheel Flow meter Installation at KAHODA, GJ

NRW-Reduction

After NRW was estimated, O&M engineering team took measures to close leaks and reduce solar Solutions Pvt. Ltd. wastage


Plant Outflow (MGD)	Sum of all the reservoirs	UFW per day (MGD)	UFW
8.52	5.77	2.75	32.3 %
8.41	5.96	2.45	29.1 %
9.15	7.24	1.91	20.9 %
8.80	7.07	1.73	19.7 %
9.13	7.33	1.80	19.8 %
8.01	6.59	1.42	17.7 %
5.10	4.27	0.83	16.3 %
8.15	7.39	0.76	9.4 %
7.51	7.09	0.42	5.5 %

ML Based Demand Estimation

 Machine Learning Algorithms based on past data, identified reservoirs with high and low demand. Based on this information, balancing of reservoirs is being done

Crisis Management

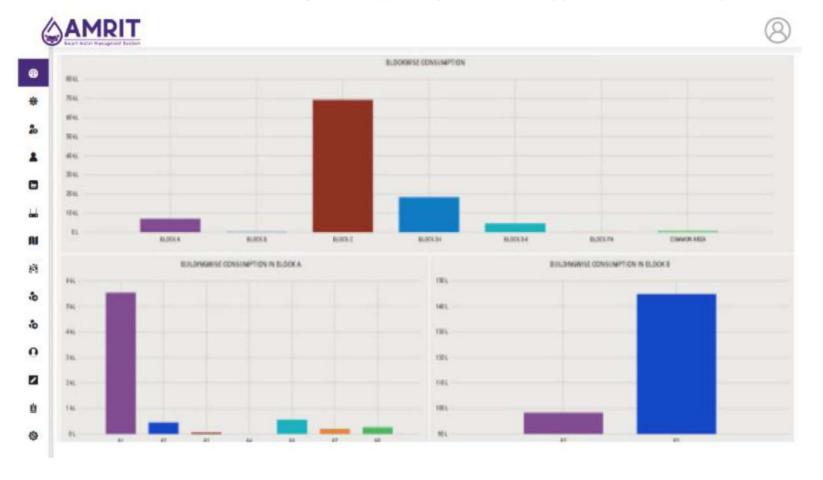
4 OCT 2009 TO 7 OCT 2009

Objective under flood situation:

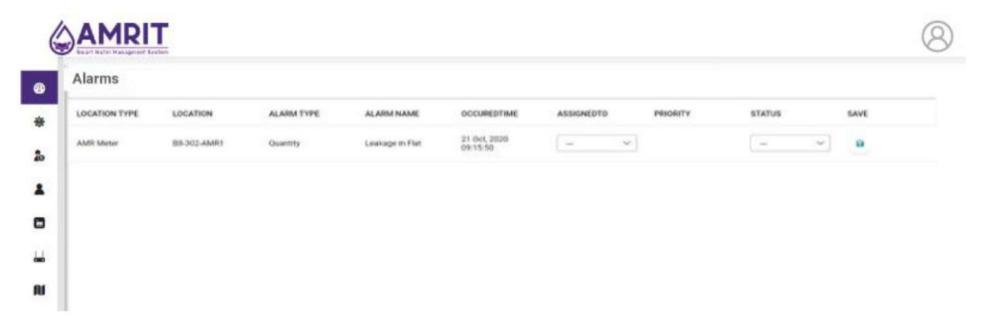
- To provide safe drinking water
- To provide minimum water equally to everyone

- Total installed capacity of Head Water Works 40 MGD
- Treatment Plants shutdown due to flood 19 MGD
- Operational capacity 21 MGD
- Acute shortfall ~50%

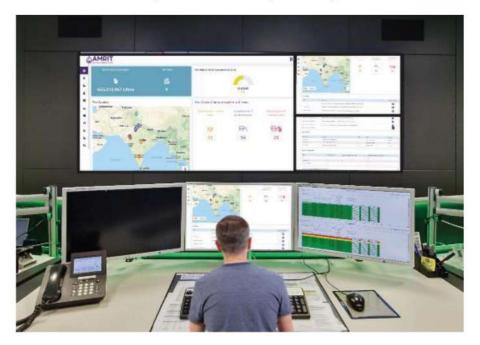
Timeliness Reports


 Based on filling and distribution data, system analyzes KPI of timeliness of delivery (WTP wise, , ELSR wise , DMA wise)

Area Wise Supply Reports



Job Card


 O&M head, supervisor can assign works to concern and track their activity, automatically calculate MTTR, MTBF

Command Centers

- Centralized Control & Commands enable effective management of water distribution with minimal effort.
- Advanced analytics and data visualization provide transparency to administration

Command Centre